सरकंडे ( पिथ) की दो बॉलों (गोलियों) पर समान (बराबर) आवेश है। इन्हें समान लम्बाई की डोरियों (धागे) से एक बिन्दु से लटकाया गया है। संतुलन की अवस्था में इनके बीच की दूसरी $r$ है। दोनों डोरियों को उनकी आधी लम्बाई पर कस कर बाँध दिया जाता है। अब संतुलन की स्थिति में दोनों बॉलों के बीच की दूरी होगा: $V$
$\left( {\frac{r}{{\sqrt[3]{2}}}} \right)$
$\left( {\frac{{2r}}{{\sqrt 3 }}} \right)$
$\left( {\frac{{2r}}{3}} \right)$
${\left( {\frac{1}{{\sqrt 2 }}} \right)^2}$
एक धातु के ठोस पृथक्कीकृत गोलाकार पर $ + Q$ आवेश दिया गया है। गोलाकार पर आवेश का वितरण
विद्युतशीलता की इकाई है
दो कण जिनके द्रव्यमान $m$ तथा आवेश $q$ है, एक दूसरे से $16$ सेमी. दूर हैं। यदि वे कोई बल अनुभव न करें तो $\frac{q}{m}$ का मान होगा
दो स्थिर इलेक्ट्रॉनों, जिनके बीच की दूरी $'2d'$ है, के बीच इन्हें मिलाने वाली रेखा के मध्यबिन्दु पर तीसरा आवेश प्रोटॉन रखा है। इस प्रोटॉन को किसी लघु दूरी $x ( x < d )$ तक दोनों इलेक्ट्रॉनों को मिलाने वाली रेखा के लम्बवत् विस्थापित किया गया है। इसके कारण यह प्रोटॉन सरल आवर्त गति करने लगता है, जिसकी कोणीय आवत्ति होती है: $( m =$ आवेशित कण की संहति $)$
एक समबाहु त्रिभुज, जिसका केन्द्र मूल बिन्दु (origin) है. के तीनो शीर्षो पर तीन $+ q$ समान आवेश रखे गए है। उन्हें एक प्रत्यानयन बल (restoring force) $f(r)=$ $kr$. जिसकी दिशा मूल बिन्दु की तरफ है और $k$ एक नियतांक है, के द्वारा साम्यावस्था (equilibrium) में रखा गया है। मूल बिन्दु से इन तीनों आवेशों की दूरी क्या होगी?